
PyTorchGeoNodes: Enabling Differentiable Shape
Programs for 3D Shape Reconstruction –

Supplementary Material

Sinisa Stekovic1, Stefan Ainetter1, Mattia D’Urso1, Friedrich Fraundorfer1, and
Vincent Lepetit2

1 Inst. for Computer Graphics and Vision, Graz Univ. of Technology, Graz, Austria
2 LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

{sinisa.stekovic, stefan.ainetter, fraundorfer}@icg.tugraz.at
mattia.durso@tugraz.at vincent.lepetit@enpc.fr

We provide additional evaluations of our search algorithm in Section 1, and
provide more details regarding our PyTorchGeoNodes framework in Section 2,
regarding our search algorithm in Section 3, and regarding our shape program
designs in Section 4.

In addition, we provide a video showing the reconstruction progress
of our approach through MCTS iterations for scenes of the ScanNet
dataset [2].

1 Additional Validation

In this section, we provide additional results to show that our method is applica-
ble to different shape programs. Tables 1, 2, 3 show quantitative evaluations for
the ’Sofa’, ’Chair’, and ’Table’ categories. Table 4 shows evaluations for the ’Ta-
ble’ and ’Cabinet’ categories for scenes from the ScanNet dataset. Note that in
the case of ’Cabinet’, we discarded ’Has Back’ and ’Number of Dividing Boards’
from the ScanNet evaluations as they could not be quantitatively evaluated:
This is because the large majority of cabinets have drawers, therefore the back
of cabinets are not visible and we cannot estimate the number of dividing boards
based on geometric objective terms in the presence of drawers. In the case of
bookshelves, objects on shelves induce noise in instance segmentation. Therefore,
the objective term does not handle such settings well. We note these are general
limitations for reconstructing cabinets and are present also for state-of-the-art
methods [1]. Qualitative results in Figure 1, 2 show additional examples where
our approach is able to reconstruct a variety of 3D shapes that are geometrically
consistent with the input scene.



2 Stekovic et al.

Parameter Full Method No Refinement No Refinement
No Exploitation Term

C
on

ti
nu

ou
s

P
ar

am
et

er
s

Mean Absolute Difference to Ground Truth (↓)

Width [cm] 8.042 16.301 15.761
Height [cm] 2.304 4.012 4.646
Depth [cm] 6.214 6.792 7.128

Leg Size [cm] 1.623 1.711 1.711
Arm Width [cm] 5.383 6.478 6.478
Arm Height [cm] 8.235 8.84 9.807
Arm Depth [cm] 12.769 14.747 14.863
Back Height [cm] 2.488 5.127 5.531
Back Depth [cm] 5.1 6.813 6.813

L Width [cm] 4.317 5.341 5.341
L Depth [cm] 11.495 12.879 12.502
Rotation [◦] 3.252 26.559 26.63

D
is

cr
et

e
P
ar

am
et

er
s Classification Accuracy (↑)

Has Legs 68.0 70.0 60.0
Has Left Arm 88.0 65.0 64.0

Has Right Arm 89.0 65.0 60.0
Has Arm Legs 62.7 56.0 52.0

Has Back 99.0 97.0 98.0
Is L-Shaped 81.0 81.0 81.0

Flip L Around Y 93.6 53.2 63.8
Table 1: Accuracy of the retrieved shape parameters for ’Sofa’ on synthetic
scenes. For continuous parameters, we report the mean absolute difference to the
ground truth parameters. For discrete parameters, we report the classification accuracy.
We provide the results for the three variants described in Section 5.3 of the main paper.



PyTorchGeoNodes 3

Parameter Full Method No Refinement No Refinement
No Exploitation Term

C
on

ti
nu

ou
s

P
ar

am
et

er
s

Mean Absolute Difference to Ground Truth (↓)

Legs Size [cm] 1.239 1.484 1.484
Leg Offset [cm] 3.483 2.667 6.562

Bottom Thickness [cm] 1.278 1.602 1.602
Bottom Size Scale 3.35 4.926 6.767
Seat Height [cm] 1.971 3.332 2.853
Seat Width [cm] 1.793 4.089 4.559
Seat Depth [cm] 3.802 5.049 5.049

Seat Thickness [cm] 1.08 1.333 1.333
Back Height [cm] 5.525 7.329 10.273
Backrest Scale 0.12 0.12 0.22

Back Thickness [cm] 1.296 1.424 1.424
Backrest Offset Scale 0.19 0.25 0.29

Arm Depth Scale 0.78 0.83 0.92
Arm Height [cm] 3.401 4.579 4.579
Arm Width [cm] 1.708 1.845 1.845

Arm Thickness [cm] 0.766 0.777 0.777
Rotation [◦] 0.506 17.148 17.192

D
is

cr
et

e
P.

Classification Accuracy (↑)

Legs Type 100.0 100.0 100.0
Has Leg Support 96.3 94.4 90.7

Has Back 95.0 97.0 96.0
Has Arms 94.0 90.0 81.0

Table 2: Accuracy of the retrieved shape parameters for ’Chair’ on synthetic
scenes. For continuous parameters, we report the mean absolute difference to the
ground truth parameters. For discrete parameters, we report the classification accuracy.
We provide the results for the three variants described in Section 5.3 of the main paper.



4 Stekovic et al.

Parameter Full Method No Refinement No Refinement
No Exploitation Term

C
on

ti
nu

ou
s

P
ar

am
et

er
s Mean Absolute Difference to Ground Truth (↓)

Width 17.842 33.853 35.956
Height 2.361 3.671 2.67
Depth 16.923 24.328 26.387

Top Thickness 1.132 1.471 1.471
Mid Leg X Scale 0.17 0.2 0.21
Mid Leg Y Scale 0.15 0.19 0.21

Mid Board Z Scale 0.16 0.16 0.16
Rotation 1.462 24.316 27.207

D
is

cr
et

e
P. Classification Accuracy (↑)

Top Shape 90.5 64.0 60.0
Legs Type 87.8 68.0 70.0

Has Mid Board 100.0 96.2 96.2
Table 3: Accuracy of the retrieved shape parameters for ’Table’ on synthetic
scenes. For continuous parameters, we report the mean absolute difference to the
ground truth parameters. For discrete parameters, we report the classification accuracy.
We provide the results for the three variants described in Section 5.3 of the main paper.

Classification accuracy [%] (↑) Chamfer

Top Shape Legs Type Has Mid Board Dist. [cm] (↓)

T
ab

le Random SP 50.65 32.04 47.87 58.6
w/o refinement 93.78 50.67 82.03 11.8

Full (Ours) 96.52 52.17 84.92 11.7

Has Legs Has Drawers

C
ab

in
et Random SP 54.167 43.75 19.7

w/o refinement 56.25 68.75 0.6
Full (Ours) 62.5 64.583 0.9

Table 4: Results of shape reconstruction for ’Cabinet’ and ’Table’ cate-
gories on the ScanNet scenes. An interesting observation is that in contrast to
’Sofa’, ’Chair’, and ’Table’, we did not observe significant advantages when adding the
refinement step to our search algorithm for the ’Cabinet’ category. Even without re-
finement, MCTS performs very well which is indicated by a very low chamfer distance.
The accuracy for ’Has Drawers’ is somewhat low considering that it influences the 3D
shape considerably. The shape of cabinets is ambiguous in terms of drawers, especially
when we estimate the rotation as well. As the back side of cabinets is never shown in
scenes from ScanNet, rotating cabinets by 180◦ will still result in geometrically consis-
tent reconstruction.



PyTorchGeoNodes 5

our model our model

Fig. 1: Additional qualitative results show that our method generalizes to a variety of
scenarios. We observe that for all examples, retrieved models are geometrically consis-
tent with the scene.



6 Stekovic et al.

our model our model

Fig. 2: Additional qualitative results show that our method generalizes to a variety of
scenarios. The last row shows two failure cases, first a minor failure due to limitations in
the design of our shape program for the chair category, and second, our reconstructed
cabinet model is rotated by 180◦. We observe that for all examples, retrieved models
are geometrically consistent with the scene.



PyTorchGeoNodes 7

2 PyTorchGeoNodes – Implementation Details

In this section, we provide additional details regarding the implementation of
our PyTorchGeoNodes framework.

2.1 Computational Graph

Shape programs in PyTorchGeoNodes are represented as computational graphs.
Therefore, for every functionality in the main paper, PyTorchGeoNodes imple-
ments a class with the corresponding functionality.

These functionalities are implemented in the form of nodes and edges:

– Nodes in our graphs are child classes of PyTorch base class torch.nn.Module
to enable seamless integration into PyTorch code. Every node in the graph
is associated with a unique id. When performing a forward pass, a node
can take either default constants or outputs of other nodes as input. There-
fore, nodes can contain multiple input and output sockets to enable flow of
information through the computational graph.

– Edge is a data structure with four attributes. ’Input node’ and ’Output
node’ define the identifiers of individual nodes that are connected by the
edge. ’Input socket’ and ’Output socket’ define the corresponding sockets.
Therefore, a node can be associated with several input and output edges,
and an edge is always shared between exactly two nodes.

During a forward pass, we use a hash map that keeps track of the output
sockets of individual nodes such that they can be easily accessed by nodes by
simply querying the correct hash. Every ’Input node’ in the graph parses named
parameters, or shape parameters, and initializes the hash map that is updated
with each forward call of nodes in the graph. Finally, we accumulate outputs of
’Output nodes’ as a list of output geometries. Note that in our experiments we
only consider computational graphs that have one output.

2.2 Efficient Implementation

As computational graphs increase in size (in our experiments, graphs can have
between 100 and 200 nodes) so does the computational time which is why we
considered different ways to improve the efficiency of PyTorchGeoNodes.

Note that, by default, computational nodes are not necessarily pre-sorted
in optimal order. A node could request an input that has not been computed
yet. As this would lead to several complications and the usage of recursive calls,
which would in turn lead to computational bottlenecks, we implement a different
solution. During the generation of the computational graph, nodes are sorted into
a list using topological sort: Based on dependencies in a graph, we ensure that
a node always appears after nodes that it is dependent on. For example, ’Input
nodes’ and other nodes that do not require any inputs will appear first, and
’Output nodes’ will be the last nodes after sorting. Then during inference, we



8 Stekovic et al.

can simply iterate this list, as inputs for nodes will be readily available once the
forward pass of the nodes is invoked.

In addition, we observed that some nodes in a graph do not necessarily de-
pend on any inputs. For example, instantiating an initial geometric primitive
does not necessarily depend on any parameters. In this case, we implement
caching such that the output of such nodes does not need to be recomputed
during every forward pass.

3 Search Algorithm – Implementation Details

In this section, we discuss implementation details regarding our search algorithm.
Discretizing continuous parameters. When organizing our search tree,

along with discrete shape parameters we also include discretized values for con-
tinuous parameters. For a given valid range of a parameter, we generate discrete
values in linear steps of 0.1. This value is fitting for all parameters since they
are represented in meters, or as aspect ratio relative to other parameters. In the
case of object rotation, we use discrete steps of size 45◦.

Shape parameter tree. As briefly mentioned in the main paper, it is ben-
eficial to organize the search tree in such a way that geometrically more similar
objects are part of the same subtree. The order in which different shape param-
eters appear in the tree is defined based on the influence of the parameter on
the final geometry. More exactly, first, we randomly initialize shape parameters
P and generate the corresponding initial 3D shape Sh(P). Then for a parameter
p and its discrete values vp ∈ p, we modify the initial shape parameters P(vp),
generate the 3D shape Sh(P(vp)), and calculate the chamfer distance CD to the
initial 3D shape. Then, the influence of a shape parameter is calculated as:

I(P ) =
∑
vp∈p

(
CD(Sh(P), Sh(P(vp)))− µCD

)2
, (1)

where µCD is the mean of chamfer distances for parameter p. We average I
over 100 instances of initial shapes to obtain the final influence of the parameter.
This equation ensures that both geometric influence, as well as the number of
individual discrete values for a parameter, are taken into account when deter-
mining the order of nodes in a tree.

Search details. As discussed in the main paper, MCTS depends on several
different hyper-parameters. Based on empirical observations from our synthetic
experiments, we use the following configuration:

– Total number of iterations is set to 300;
– Number of simulations is set to 50. Setting this number high helps avoid local

minima in early iterations of MCTS. However, this number is only used in
early iterations of MCTS, as every time a simulation selects a solution that
was already visited, we conclude the simulation as it is likely that this subtree
is already well-explored;

– We set λ = 0.2 to weight the exploration term during the selection phase;



PyTorchGeoNodes 9

– We use the Adam optimizer during the optimization phase with the learning
rate set to 5e−2;

– Optimization is the computational bottleneck in our search algorithm. There-
fore, we only perform optimization if a leaf node is reached during the se-
lection phase, and skip optimization if the solution is reached during the
simulation phase of MCTS . This way, we make sure that we only optimize
good solutions.

4 Shape Program Designs for Validation

Here, we provide more details on our designs of individual shape programs.
’Cabinet’ consists of 12 parameters, 8 continuous, 3 boolean, and 1 integer

parameter:

– ’Width’, ’Height’, and ’Depth’ are continuous parameters that control the
width , height and depth of a cabinet in meters. The valid ranges of values
are [0.3, 2.0], [0.3, 2.5] and [0.1, 0.6], respectively;

– ’Board Thickness’ is a continuous parameter that controls the thickness of
side boards. The valid range of values is [0.01, 0.09];

– ’Has Back’ is a boolean parameter that controls whether a cabinet has a
back board;

– ’Has Legs’ is a boolean parameter that controls whether a cabinet has legs;
– ’Leg Width’, ’Leg Height’, ’Leg Depth’ are continuous parameters that con-

trol the width, height, and depth of legs in meters. The valid range is
[0.03, 0.1].

– ’Number of Dividing Boards’ is an integer parameter that controls the num-
ber of dividing boards on a cabinet. The valid range of values is in [2, 5];

– ’Dividing Board Thickness’ is a continuous parameter that controls the thick-
ness of dividing boards in meters. The valid range of values is in [0.01, 0.05];

– ’Has Drawers’ is a boolean parameter that controls whether the cabinet has
drawers.

’Chair’ consists of 20 parameters, 16 continuous, and 4 boolean parameters:

– ’Legs Type’ is a boolean parameter that determines whether a chair has four
legs or one leg in the middle.

– ’Legs Size’ is a continuous parameter that determines the thickness of a chair
in meters. The valid range of values is in [0.02, 0.08];

– ’Has Leg Support’ is a boolean parameter that controls whether legs of a
four-legged chair are connected with support elements;

– ’Support Offset’ is a continuous parameter that controls the height offset of
leg support relative to the seat height. The valid range of values is in [0, 0.5];

– ’Bottom Thickness’ is a continuous parameter that controls the thickness of
the bottom cylindric surface of one-legged chairs in meters. The valid range
of values is in [0.02, 0.08];

– ’Bottom Size Scale’ is a continuous parameter that controls the radius of the
bottom surface relative to seat width. The valid range is in [0.7, 1.0];



10 Stekovic et al.

– ’Seat Height’, ’Seat Width’, ’Seat Depth’, ’Seat Thickness’ are continuous
parameters that control the geometry of the seat in meters. The valid ranges
are [0.3, 0.9], [0.4, 0.8], [0.4, 0.6] and [0.04, 0.1], respectively;

– ’Has Back’ is a boolean parameter that controls whether a chair has back
elements;

– ’Back Height’ is a continuous parameter that controls the height of the chair
back in meters. The valid range is in [0.3, 1.0];

– ’Backrest Scale’ is a continuous parameter that scales length of backrest
relative to the height of the backrest. The valid range is in [0.1, 1.0];

– ’Back Thickness’ is a continuous parameter that controls the thickness of
the back elements in meters. The valid range is in [0.02, 0.08];

– ’Backrest Offset Scale’ is a continuous parameter that positions the backrest
relative to the height of the back. The valid range is in [0.0, 1.0];

– ’Has Arms’ is a boolean parameter that controls whether a chair has arms;
– ’Arm Depth Scale’ is a continuous parameter that controls the arm depth

relative to the seat depth. The valid range is in [0.5, 0.8];
– ’Arm Height’ is a continuous parameter that controls the height of arms in

meters. The valid range is in [0.1, 0.3];
– ’Arm Width’ is a continuous parameter that controls the width of arms in

meters. The valid range is in [0.08, 0.15];
– ’Arm Thickness’ is a continuous parameter that controls the thickness of

arms in meters. The valid range is in [0.02, 0.05].

’Sofa’ consists of 18 parameters, 11 continuous parameters and 7 boolean
parameters:

– ’Width’, ’Height’, ’Depth’ are continuous parameters that control width,
height and depth of the base of a sofa in meters. The valid ranges are in
[0.5, 2.7], [0.3, 0.6] and [0.3, 0.6], respectively;

– ’Has Legs’ is a boolean parameter that controls whether the sofa has legs;
– ’Leg Size’ is a continuous parameter that controls the size of legs in meters.

The valid range is in [0.03, 0.1];
– ’Has Left Arm’ and ’Has Right Arm’ are boolean parameters that control

whether the sofa has arms;
– ’Arm Width’, ’Arm Height’, ’Arm Depth’ are continuous parameters that

control the width, height, and depth of arms in meters. The valid ranges are
in [0.05, 0.3], [0.5, 0.8], [0.6, 1.0];

– ’Has Arm Legs’ is a boolean parameter that controls whether a sofa has legs
directly under the arms;

– ’Has Back’ is a boolean parameter that controls whether a sofa has a back;
– ’Back Height’ and ’Back Depth’ are continuous parameters that control the

height and depth of the back in meters. The valid ranges are in [0.3, 0.7] and
[0.05, 0.3];

– ’Is L-Shaped’ is a boolean parameter that controls whether the sofa contains
the ’L’ extension;

– ’L Width’ and ’L Depth’ control the width and depth of the ’L’ extension in
meters. The valid ranges are in [0.3, 0.5], [0.3, 1.0];



PyTorchGeoNodes 11

– ’Flip L Around Y’ is a boolean parameter that controls whether the ’L’
extension is on the left or the right side of the couch.

’Table’ consists of 10 parameters, 6 continuous, 2 boolean and 1 integer
parameters:

– ’Width’, ’Depth’ and ’Height’ are continuous parameters that control the
width, depth, and height of a table in meters. The valid ranges are in
[0.4, 4.0], [0.4, 1.3], [0.4, 1.5];

– ’Top’ is a boolean that controls whether the shape of the top board of a
table is cylindrical or cuboidal;

– ’Top thickness’ is a continuous parameter that controls the thickness of the
top in meters. The valid range is in [0.04, 0.1];

– ’Legs Type’ is an integer parameter that controls whether a table has 1 in
the middle, or 2 legs, or 4 legs on the side.

– ’Mid Leg X Scale’ and ’Mid Leg Y Scale’ are continuous parameters that
scale the middle leg relative to the width and depth of the table. The valid
range for both parameters is in [0.05, 1.0];

– ’Has Mid Board’ is a boolean parameter that controls whether a table has a
second board underneath the top;

– ’Mid Board Z Scale’ is a continuous parameter that controls the offset of
the middle board relative to the height of the table. The valid range is in
[0.05, 0.5].

References

1. Ainetter, S., Stekovic, S., Fraundorfer, F., Lepetit, V.: HOC-Search: Efficient CAD
Model and Pose Retrieval from RGB-D Scans. International Conference on 3D Vi-
sion (2024)

2. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
Net: Richly-Annotated 3D Reconstructions of Indoor Scenes. In: Conference on
Computer Vision and Pattern Recognition (2017)


	PyTorchGeoNodes: Enabling Differentiable Shape Programs for 3D Shape Reconstruction – Supplementary Material

